
HALMSTAD UNIVERSITY SYLLABUS
Phone +46 35 16 71 00 - www.hh.se -translated from Swedish
School of Information Technology Page 1 (2)

Course Code: DT8051 / 3

Python - a Gateway to Machine Learning 7.5 credits
Python - en inkörsport till Machine Learning 7.5 hp

Second cycle
Main field: Computer Science and Engineering, Second cycle, has only first-cycle course/s as entry requirements (A1N)
Syllabus is adopted by the Research and Education Board (2024-03-20) and is valid for students admitted for the autumn semester 2024.

Placement in the Academic System
The course is included in the master of science in engineering
Intelligent Systems (300 credits), the master’s program Infor-
mation Technology (120 credits) and the master’s program
Embedded and Intelligent Systems (120 credits). The course
is also offered as a freestanding course.

Prerequisites and Conditions of Admission
Degree of Bachelor of Science or Degree of Bachelor of
Science in Engineering. Courses in computer science, com-
puter engineering or electrical engineering 60 credits inclu-
ding thesis, and programming 7,5 credits. The degree must
be equivalent to a Swedish kandidatexamen or Swedish hög-
skoleingenjörsexamen and must have been awarded from an
internationally recognised university. English 6. Exemption of
the requirement in Swedish is granted.

Course Objectives
The course builds on on the student’s knowledge and skills
in basic programming techniques and focuses on the student
being able to recognize, select and use techniques for con-
structing algorithms, techniques for analyzing algorithms and
techniques for organizing data in programs. The purpose of
the course is also to prepare the student for further studies
and/or work within machine learning by providing training
in the programming language Python. The course gives the
student the opportunity to learn the programming langu-
age Python, but also general programming concepts such
as algorithm complexity, algorithm design and classic data
structures, and how such concepts are used to handle Big
Data problems. Building on basic programming knowledge
and programming practice, the course prepares the student
to participate in major programming projects. The course
introduces well established techniques for solving problems
that arise often and prepares the student to make well foun-
ded decisions when choosing among alternative solutions.
An additional goal of the course is that the student offers
the opportunity to learn and use advanced programming
language constructions.

Following successful completion of the course the student
should be able to:

Knowledge and understanding

• explain how to estimate the execution time of pro-
grams.

• describe algorithm design techniques such as divide &
conquer, recursion and dynamic programming

• identify data structures and algorithms for sorting and
searching, such as quicksort, hash tables and binary
search trees

Skills and ability

• identify the need for and be able to use data structures
as modules to build efficient programs

• use algorithm design techniques to solve problems
with efficient programs

• use basic programming techniques for distributed file
systems, tabular data and linear algebra

Judgement and approach

• judge how suitable a program is given the algorithms
and data structures used

• choose adequate implementations of algorithms and
data structures from program libraries

• choose suitable frameworks for processing big data
and tabular data and for linear algebra

Primary Contents
Introduction to the programming language used in the cour-
se.

Introduction to the analysis of complexity of algorithms,
including asymptotic Big-O notation. Design and analysis of
algorithms using recursion and divide & conquer. Algorithms
for sorting and searching. Introduction to data structures
including heaps, hash tables and binary search trees as well
as how they are present in the programming language Python.

Introduction to Python’s libraries to process tabular data
(Pandas), for linear algebra (NumPy) and to the frameworks
for processing Big Data on distributed file systems.



Page 2 (2)
DT8051 / 3

Teaching Formats
Teaching consists of lectures and programming exercises as
well as supervision for laboratory and project work.
Teaching is conducted in English.

Examination
The overall grades of Fail, 3, 4 or 5 will be awarded for the
course.
The course is examined with a individual written exam and
individual oral and written presentation of laboratory work
and projects.

Name of the test Grading

Witten Examination 3
credits

U/3/4/5

Laborations and Project 4,5 cre-
dits

U/G

If there are special reasons, the examiner may make ex-

ceptions from the specified examination format and allow a
student to be examined in another way. Special reasons can
e.g. be a decision on learning support.

For elite sports students according to Riktlinjer för kom-
binationen studier och elitidrott vid Högskolan i Halmstad,
DNR: L 2018/177, the examiner has the right to decide
on an adapted examination component or let the student
complete the examination in an alternative way.

Course Evaluation
Course evaluation is part of the course. This evaluation
should offer guidance in the future development and planning
of the course. Course evaluations should be documented and
made available to the students.

Course Literature and Other Study Resources

Tim Roughgarden. Algorithms Illuminated. Soundlikeyourself Publishing, LCC. San Francisco. 2017- 2019 (Online material
freely available: www.algorithmsilluminated.org)

John DeNero. Composing Programs. Freely available: http://composingprograms.com

Sam Lau, Joey Gonzalez and Deb Nolan. Principles and Techniques of Data Science (kapitel 7).
Freely available on: https://www.textbook.ds100.org/intro.html

Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. OSDI 2004. https://ai.google/

research/pubs/pub62

Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams, Robert Henry, Robert Bradshaw and Nathan Weizen-
baum. FlumeJava: Easy, Efficient Data-Parallel Pipelines. ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI) 2010. https://ai.google/research/pubs/pub35650


